Intelligence Section 09

Risk Heatmap

Dimensional risk topography mapping likelihood against business impact across 894 Field Operations.

Multi-Provider Fleet 5x5 Matrix Logic
{[ { label: 'Extreme Risk', value: 62, icon: 'fa-skull-crossbones', color: 'text-danger-red', bg: 'bg-danger-red/10' }, { label: 'Critical Exposure', value: 245, icon: 'fa-fire', color: 'text-accent-amber', bg: 'bg-accent-amber/10' }, { label: 'Tactical Concern', value: 387, icon: 'fa-bolt', color: 'text-action-blue', bg: 'bg-action-blue/10' }, { label: 'Standard Audit', value: 200, icon: 'fa-info-circle', color: 'text-success-green', bg: 'bg-success-green/10' } ].map(metric => (
{metric.value}
{metric.label}
))}

Composite Risk Matrix

Aggregated Multi-Provider Vector Analysis

Likelihood vs Impact
Operational Impact
{['Rare', 'Unlikely', 'Possible', 'Likely', 'Certain'].map(h => (
{h}
))} {/* Matrix Rows (Impact levels) */} {[ { label: 'Catastrophic', cells: [ { score: 5, count: 8, cls: 'bg-orange-500/20 text-orange-400' }, { score: 10, count: 12, cls: 'bg-orange-500/40 text-orange-200' }, { score: 15, count: 18, cls: 'bg-danger-red/40 text-red-200' }, { score: 20, count: 14, cls: 'bg-danger-red/60 text-red-100' }, { score: 25, count: 10, cls: 'bg-danger-red/80 text-white shadow-[0_0_20px_rgba(255,77,109,0.3)]' } ]}, { label: 'Major', cells: [ { score: 4, count: 14, cls: 'bg-accent-amber/20 text-accent-amber' }, { score: 8, count: 28, cls: 'bg-orange-500/20 text-orange-400' }, { score: 12, count: 42, cls: 'bg-orange-500/40 text-orange-200' }, { score: 16, count: 35, cls: 'bg-danger-red/40 text-red-200' }, { score: 20, count: 22, cls: 'bg-danger-red/60 text-red-100' } ]}, { label: 'Moderate', cells: [ { score: 3, count: 24, cls: 'bg-success-green/20 text-success-green' }, { score: 6, count: 56, cls: 'bg-accent-amber/20 text-accent-amber' }, { score: 9, count: 98, cls: 'bg-orange-500/20 text-orange-400' }, { score: 12, count: 74, cls: 'bg-orange-500/40 text-orange-200' }, { score: 15, count: 45, cls: 'bg-danger-red/40 text-red-200' } ]}, { label: 'Minor', cells: [ { score: 2, count: 32, cls: 'bg-success-green/10 text-success-green/70' }, { score: 4, count: 48, cls: 'bg-success-green/20 text-success-green' }, { score: 6, count: 65, cls: 'bg-accent-amber/20 text-accent-amber' }, { score: 8, count: 52, cls: 'bg-orange-500/20 text-orange-400' }, { score: 10, count: 28, cls: 'bg-orange-500/40 text-orange-200' } ]}, { label: 'Negligible', cells: [ { score: 1, count: 18, cls: 'bg-white/5 text-dark-text-disabled' }, { score: 2, count: 30, cls: 'bg-success-green/10 text-success-green/70' }, { score: 3, count: 48, cls: 'bg-success-green/20 text-success-green' }, { score: 4, count: 35, cls: 'bg-accent-amber/20 text-accent-amber' }, { score: 5, count: 16, cls: 'bg-accent-amber/40 text-accent-amber shadow-[0_0_15px_rgba(244,184,96,0.2)]' } ]} ].map(row => (
{row.label}
{row.cells.map((cell, i) => (
{cell.score}
{cell.count} OPS
))}
))}
Likelihood of Exploitation

Heuristic Legend

{[ { label: 'Extreme (20-25)', color: 'bg-danger-red' }, { label: 'Critical (13-19)', color: 'bg-orange-500' }, { label: 'High (7-12)', color: 'bg-accent-amber' }, { label: 'Moderate (4-6)', color: 'bg-success-green' }, { label: 'Low (1-3)', color: 'bg-white/20' } ].map(item => (
{item.label}
))}

Matrix Logic

Risk Score = Impact (1-5) × Likelihood (1-5). Tactical focus is prioritized on the 46 findings in the Extreme zone demanding immediate synchronization.

Temporal Risk Trend

Fleet Distribution